ATOM
NaraSumber:
http://id.shvoong.com/exact-sciences/physics/2106437-pengertian-atom/#ixzz1ccUMOLy7
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
kimia.upi.edu/utama/bahanajar/kuliah_web/2007/.../model.html
Definisi atom adalah bagian
terkecil dari suatu zat / unsur yang tidak dapat dibagi-bagi lagiu dengan cara
reaksi kimia biasa. Atom terdiri atas inti atom bermuatan positif (tersusun
oleh proton dan neutron), dengan electron sebagai awan yang mengelilingi.
Konsepsi tentang atom itu pertama kali dimunculkan oleh Demokritus (460 – 370 SM). Kemudian, John Dalton (1766-1844) melaksanakan percobaan yang menunjang pertumbuhan pengertian tentang atom. Teori atom Dalton menerangkan reaksi-reaksi kimia antar zat-zat. Dalton mengemukakan bahwa :
1. atom merupakan partikel terkecil yang tidak dapat dibagi
2. atom-atom suatu unsur semuanya serupa dan tidak dapat berubah menjadi atom unsur lain
3. dua atom atau lebih dapat bergabung membentuk suatu molekul
4. pada reaksi kimia, atom-atom dapat berpisah dan bergabung kembali dengan susunan berbeda, tetapi massa keseluruhan tetap.
Massa atom
Karena mayoritas massa atom berasal dari proton dan neutron, jumlah keseluruhan partikel ini dalam atom disebut sebagai nomor massa. Massa atom pada keadaan diam sering diekspresikan menggunakan satuan massa atom (u) yang juga disebut dalton (Da). Satuan ini didefinisikan sebagai seperduabelas massa atom karbon-12 netral, yang kira-kira sebesar 1,66 × 10−27 kg.Hidrogen-1 yang merupakan isotop teringan hidrogen memiliki bobot atom 1,007825 u. Atom memiliki massa yang kira-kira sama dengan nomor massanya dikalikan satuan massa atom.Atom stabil yang paling berat adalah timbal-208, dengan massa sebesar 207,9766521 u.
Konsepsi tentang atom itu pertama kali dimunculkan oleh Demokritus (460 – 370 SM). Kemudian, John Dalton (1766-1844) melaksanakan percobaan yang menunjang pertumbuhan pengertian tentang atom. Teori atom Dalton menerangkan reaksi-reaksi kimia antar zat-zat. Dalton mengemukakan bahwa :
1. atom merupakan partikel terkecil yang tidak dapat dibagi
2. atom-atom suatu unsur semuanya serupa dan tidak dapat berubah menjadi atom unsur lain
3. dua atom atau lebih dapat bergabung membentuk suatu molekul
4. pada reaksi kimia, atom-atom dapat berpisah dan bergabung kembali dengan susunan berbeda, tetapi massa keseluruhan tetap.
Massa atom
Karena mayoritas massa atom berasal dari proton dan neutron, jumlah keseluruhan partikel ini dalam atom disebut sebagai nomor massa. Massa atom pada keadaan diam sering diekspresikan menggunakan satuan massa atom (u) yang juga disebut dalton (Da). Satuan ini didefinisikan sebagai seperduabelas massa atom karbon-12 netral, yang kira-kira sebesar 1,66 × 10−27 kg.Hidrogen-1 yang merupakan isotop teringan hidrogen memiliki bobot atom 1,007825 u. Atom memiliki massa yang kira-kira sama dengan nomor massanya dikalikan satuan massa atom.Atom stabil yang paling berat adalah timbal-208, dengan massa sebesar 207,9766521 u.
Model-model atom
1. Atom John Dalton
Pada tahun 1803, John Dalton
mengemukakan mengemukakan pendapatnaya tentang atom. Teori atom Dalton
didasarkan pada dua hukum, yaitu hukum kekekalan massa (hukum Lavoisier) dan
hukum susunan tetap (hukum prouts). Lavosier mennyatakan bahwa “Massa total
zat-zat sebelum reaksi akan selalu sama dengan massa total zat-zat hasil
reaksi”. Sedangkan Prouts menyatakan bahwa “Perbandingan massa unsur-unsur
dalam suatu senyawa selalu tetap”. Dari kedua hukum tersebut Dalton
mengemukakan pendapatnya tentang atom sebagai berikut:
- Atom merupakan bagian terkecil dari materi yang sudah tidak dapat dibagi lagi
- Atom digambarkan sebagai bola pejal yang sangat kecil, suatu unsur memiliki atom-atom yang identik dan berbeda untuk unsur yang berbeda
- Atom-atom bergabung membentuk senyawa dengan perbandingan bilangan bulat dan sederhana. Misalnya air terdiri atom-atom hidrogen dan atom-atom oksigen
- Reaksi kimia merupakan pemisahan atau penggabungan atau penyusunan kembali dari atom-atom, sehingga atom tidak dapat diciptakan atau dimusnahkan.
Model Atom Dalton seperti bola pejal
Mula-mula tinggi cairan merkuri
dalam wadah yang berisi udara adalah A, tetapi setelah beberapa hari merkuri
naik ke B dan ketinggian ini tetap. Beda tinggi A dan B menyatakan volume udara
yang digunakan oleh merkuri dalam pembentukan bubuk merah (merkuri oksida).
Untuk menguji fakta ini, Lavoisier mengumpulkan merkuri oksida, kemudian
dipanaskan lagi. Bubuk merah ini akan terurai menjadi cairan merkuri dan
sejumlah volume gas (oksigen) yang jumlahnya sama dengan udara yang dibutuhkan
dalam percobaan pertama .
Percobaan Joseph Pruost Pada tahun 1799 Proust menemukan bahwa senyawa
tembaga karbonat baik yang dihasilkan melalui sintesis di laboratorium maupun
yang diperoleh di alam memiliki susunan yang tetap.
Percobaan
ke- |
Sebelum
pemanasan (g Mg)
|
Setelah
pemanasan (g MgO)
|
Perbandingan
Mg/MgO
|
1
|
0,62
|
1,02
|
0,62/1,02 =
0,61
|
2
|
0,48
|
0,79
|
0,48/0,79 =
0,60
|
3
|
0,36
|
0,60
|
0,36/0,60 =
0,60
|
Kelebihan model atom
dalton :
Mulai membangkitkan minat terhadap penelitian mengenai model atom
Mulai membangkitkan minat terhadap penelitian mengenai model atom
Kelemahan model atom dalton :
Teori atom Dalton tidak dapat menerangkan suatu larutan dapat menghantarkan arus listrik. Bagaimana mungkin bola pejal dapat menghantarkan arus listrik? padahal listrik adalah elektron yang bergerak. Berarti ada partikel lain yang dapat menghantarkan arus listrik.
Teori atom Dalton tidak dapat menerangkan suatu larutan dapat menghantarkan arus listrik. Bagaimana mungkin bola pejal dapat menghantarkan arus listrik? padahal listrik adalah elektron yang bergerak. Berarti ada partikel lain yang dapat menghantarkan arus listrik.
2. Teori Atom J. J. Thomson
Berdasarkan penemuan tabung
katode yang lebih baik oleh William Crookers, maka J.J. Thomson meneliti lebih
lanjut tentang sinar katode dan dapat dipastikan bahwa sinar katode merupakan
partikel, sebab dapat memutar baling-baling yang diletakkan diantara katode dan
anode. Dari hasil percobaan ini, Thomson menyatakan bahwa sinar katode
merupakan partikel penyusun atom (partikel subatom) yang bermuatan negatif dan
selanjutnya disebut elektron.
Atom merupakan partikel yang bersifat netral, oleh karena elektron bermuatan negatif, maka harus ada partikel lain yang bermuatan positifuntuk menetrallkan muatan negatif elektron tersebut. Dari penemuannya tersebut, Thomson memperbaiki kelemahan dari teori atom dalton dan mengemukakan teori atomnya yang dikenal sebagai Teori Atom Thomson. Yang menyatakan bahwa:
Atom merupakan partikel yang bersifat netral, oleh karena elektron bermuatan negatif, maka harus ada partikel lain yang bermuatan positifuntuk menetrallkan muatan negatif elektron tersebut. Dari penemuannya tersebut, Thomson memperbaiki kelemahan dari teori atom dalton dan mengemukakan teori atomnya yang dikenal sebagai Teori Atom Thomson. Yang menyatakan bahwa:
“Atom merupakan bola pejal yang bermuatan positif
dan didalamya tersebar muatan negatif elektron”
Model atomini dapat digambarkan
sebagai jambu biji yang sudah dikelupas kulitnya. biji jambu menggambarkan
elektron yang tersebar marata dalam bola daging jambu yang pejal, yang pada
model atom Thomson dianalogikan sebagai bola positif yang pejal.
Kelemahan:
Kelemahan model atom Thomson ini tidak dapat
menjelaskan susunan muatan positif dan negatif dalam bola atom tersebut.
3. Teori Atom Rutherford
Rutherford bersama dua orang
muridnya (Hans Geigerdan Erners Masreden) melakukan percobaan yang dikenal
dengan hamburan sinar alfa (λ) terhadap lempeng tipis emas. Sebelumya telah
ditemukan adanya partikel alfa, yaitu partikel yang bermuatan positif dan
bergerak lurus, berdaya tembus besar sehingga dapat menembus lembaran tipis
kertas. Percobaan tersebut sebenarnya bertujuan untuk menguji pendapat Thomson,
yakni apakah atom itu betul-betul merupakan bola pejal yang positif yang bila
dikenai partikel alfa akan dipantulkan atau dibelokkan. Dari pengamatan mereka,
didapatkan fakta bahwa apabila partikel alfa ditembakkan pada lempeng emas yang
sangat tipis, maka sebagian besar partikel alfa diteruskan (ada penyimpangan
sudut kurang dari 1°), tetapi dari pengamatan Marsden diperoleh fakta bahwa
satu diantara 20.000 partikel alfa akan membelok sudut 90° bahkan lebih.
Berdasarkan gejala-gejala yang terjadi, diperoleh beberapa kesipulan beberapa berikut:
Berdasarkan gejala-gejala yang terjadi, diperoleh beberapa kesipulan beberapa berikut:
- Atom bukan merupakan bola pejal, karena hampir semua partikel alfa diteruskan
- Jika lempeng emas tersebut dianggap sebagai satu lapisanatom-atom emas, maka didalam atom emas terdapat partikel yang sangat kecil yang bermuatan positif.
- Partikel tersebut merupakan partikelyang menyusun suatu inti atom, berdasarkan fakta bahwa 1 dari 20.000 partikel alfa akan dibelokkan. Bila perbandingan 1:20.000 merupakan perbandingan diameter, maka didapatkan ukuran inti atom kira-kira 10.000 lebih kecil daripada ukuran atom keseluruhan.
Berdasarkan fakta-fakta yang
didapatkan dari percobaan tersebut, Rutherford mengusulkan model atom yang
dikenal dengan Model Atom Rutherford yang menyatakan bahwa Atom terdiri dari
inti atom yang sangat kecil dan bermuatan positif, dikelilingi oleh elektron
yang bermuatan negatif. Rutherford menduga bahwa didalam inti atom terdapat
partikel netral yang berfungsi mengikat partikel-partikel positif agar tidak
saling tolak menolak.
Kelebihan Model Atom Rutherford :
Membuat hipotesa bahwa atom tersusun dari inti atom dan elektron yang mengelilingi inti
Membuat hipotesa bahwa atom tersusun dari inti atom dan elektron yang mengelilingi inti
Kelemahan Model atom rutherford :
Tidak dapat menjelaskan mengapa elektron tidak jatuh ke dalam inti atom. Berdasarkan teori fisika, gerakan elektron mengitari inti ini disertai pemancaran energi sehingga lama - kelamaan energi elektron akan berkurang dan lintasannya makin lama akan mendekati inti dan jatuh ke dalam inti Ambilah seutas tali dan salah satu ujungnya Anda ikatkan sepotong kayu sedangkan ujung yang lain Anda pegang. Putarkan tali tersebut di atas kepala Anda. Apa yang terjadi? Benar. Lama kelamaan putarannya akan pelan dan akan mengenai kepala Anda karena putarannya lemah dan Anda pegal memegang tali tersebut. Karena Rutherford adalah telah dikenalkan lintasan/kedudukan elektron yang nanti disebut dengan kulit.
Tidak dapat menjelaskan mengapa elektron tidak jatuh ke dalam inti atom. Berdasarkan teori fisika, gerakan elektron mengitari inti ini disertai pemancaran energi sehingga lama - kelamaan energi elektron akan berkurang dan lintasannya makin lama akan mendekati inti dan jatuh ke dalam inti Ambilah seutas tali dan salah satu ujungnya Anda ikatkan sepotong kayu sedangkan ujung yang lain Anda pegang. Putarkan tali tersebut di atas kepala Anda. Apa yang terjadi? Benar. Lama kelamaan putarannya akan pelan dan akan mengenai kepala Anda karena putarannya lemah dan Anda pegal memegang tali tersebut. Karena Rutherford adalah telah dikenalkan lintasan/kedudukan elektron yang nanti disebut dengan kulit.
4. Teori Atom Bohr
pada tahun 1913,
pakar fisika Denmark bernama Neils Bohr memperbaiki kegagalan atom Rutherford
melalui percobaannya tentang spektrum atom hidrogen. Percobaannya ini berhasil
memberikan gambaran keadaan elektron dalam menempati daerah disekitar inti
atom. Penjelasan Bohr tentang atom hidrogen melibatkan gabungan antara teori
klasik dari Rutherford dan teori kuantum dari Planck, diungkapkan dengan empat
postulat, sebagai berikut:
- Hanya ada seperangkat orbit tertentu yang diperbolehkan bagi satu elektron dalam atom hidrogen. Orbit ini dikenal sebagai keadaan gerak stasioner (menetap) elektron dan merupakan lintasan melingkar disekeliling inti.
- Selama elektron berada dalam lintasan stasioner, energi elektron tetap sehingga tidak ada energi dalam bentuk radiasi yang dipancarkan maupun diserap.
- Elektron hanya dapat berpindah dari satu lintasan stasioner ke lintasan stasioner lain. Pada peralihan ini, sejumlah energi tertentu terlibat, besarnya sesuai dengan persamaan planck, ΔE = hv.
- Lintasan stasioner yang dibolehkan memilki besaran dengan sifat-sifat tertentu, terutama sifat yang disebut momentum sudut. Besarnya momentum sudut merupakan kelipatan dari h/2∏ atau nh/2∏, dengan n adalah bilangan bulat dan h tetapan planck.
Menurut model atom bohr,
elektron-elektron mengelilingi inti pada lintasan-lintasan tertentu yang
disebut kulit elektron atau tingkat energi. Tingkat
energi paling rendah adalah kulit elektron yang terletak paling dalam, semakin
keluar semakin besar nomor kulitnya dan semakin tinggi tingkat energinya.
Kelebihan Model Atom Bohr :
atom Bohr adalah bahwa atom terdiri dari beberapa kulit untuk tempat berpindahnya elektron.
Kelemahan Model Atom Bohr :
model atom ini adalah tidak dapat menjelaskan efek Zeeman dan efek Strack
atom Bohr adalah bahwa atom terdiri dari beberapa kulit untuk tempat berpindahnya elektron.
Kelemahan Model Atom Bohr :
model atom ini adalah tidak dapat menjelaskan efek Zeeman dan efek Strack
model atom ini tidak bisa
menjelaskan spektrum warna dari atom berelektron banyak.
Model
Bohr dari atom hidrogen menggambarkan elektron-elektron bermuatan negatif
mengorbit pada kulit atom dalam lintasan tertentu mengelilingi inti atom yang
bermuatan positif. Ketika elektron meloncat dari satu orbit ke orbit lainnya
selalu disertai dengan pemancaran atau penyerapan sejumlah energi
elektromagnetik.
Di dalam fisika atom, model Bohr adalah
model atom yang diperkenalkan oleh Niels Bohr pada 1913. Model ini
menggambarkan atom sebagai sebuah inti kecil bermuatan positif yang dikelilingi
oleh elektron yang bergerak dalam orbit sirkular mengelilingi inti — mirip
sistem tata surya, tetapi peran gaya gravitasi digantikan oleh gaya
elektrostatik. Model ini adalah pengembangan dari model puding prem (1904),
model Saturnian (1904), dan model Rutherford (1911). Karena model Bohr adalah
pengembangan dari model Rutherford, banyak sumber mengkombinasikan kedua nama
dalam penyebutannya menjadi model Rutherford-Bohr.
Kunci sukses model ini adalah dalam menjelaskan
formula Rydberg mengenai garis-garis emisi spektral atom hidrogen; walaupun
formula Rydberg sudah dikenal secara eksperimental, tetapi tidak pernah
mendapatkan landasan teoretis sebelum model Bohr diperkenalkan. Tidak hanya
karena model Bohr menjelaskan alasan untuk struktur formula Rydberg, ia juga
memberikan justifikasi hasil empirisnya dalam hal suku-suku konstanta fisika
fundamental.
Model Bohr adalah sebuah model primitif mengenai
atom hidrogen. Sebagai sebuah teori, model Bohr dapat dianggap sebagai sebuah
pendekatan orde pertama dari atom hidrogen menggunakan mekanika kuantum yang
lebih umum dan akurat, dan dengan demikian dapat dianggap sebagai model yang
telah usang. Namun demikian, karena kesederhanaannya, dan hasil yang tepat
untuk sebuah sistem tertentu, model Bohr tetap diajarkan sebagai pengenalan
pada mekanika kuantum.
Sejarah Model
Atom Bohr
Di awal abad 20, percobaan oleh Ernest Rutherford
telah dapat menunjukkan bahwa atom terdiri dari sebentuk awan difus elektron
bermuatan negatif mengelilingi inti yang kecil, padat, dan bermuatan positif.
Berdasarkan data percobaan ini, sangat wajar jika fisikawan kemudian
membayangkan sebuah model sistem keplanetan yang diterapkan pada atom, model
Rutherford tahun 1911, dengan elektron-elektron mengorbit inti seperti layaknya
planet mengorbit matahari. Namun demikian, model sistem keplanetan untuk atom
menemui beberapa kesulitan. Sebagai contoh, hukum mekanika klasik (Newtonian)
memprediksi bahwa elektron akan melepas radiasi elektromagnetik ketika sedang
mengorbit inti. Karena dalam pelepasan tersebut elektron kehilangan energi,
maka lama-kelamaan akan jatuh secara spiral menuju ke inti. Ketika ini terjadi,
frekuensi radiasi elektromagnetik yang dipancarkan akan berubah. Namun
percobaan pada akhir abad 19 menunjukkan bahwa loncatan bunga api listrik yang
dilalukan dalam suatu gas bertekanan rendah di dalam sebuah tabung hampa akan
membuat atom-atom gas memancarkan cahaya (yang berarti radiasi elektromagnetik)
dalam frekuensi-frekuensi tetap yang diskret.
Untuk mengatasi hal ini dan kesulitan-kesulitan
lainnya dalam menjelaskan gerak elektron di dalam atom, Niels Bohr mengusulkan,
pada 1913, apa yang sekarang disebut model atom Bohr. Dua gagasan kunci
adalah:
- Elektron-elektron bergerak di dalam orbit-orbit dan memiliki momenta yang terkuantisasi, dan dengan demikian energi yang terkuantisasi. Ini berarti tidak setiap orbit, melainkan hanya beberapa orbit spesifik yang dimungkinkan ada yang berada pada jarak yang spesifik dari inti.
- Elektron-elektron tidak akan kehilangan energi secara perlahan-lahan sebagaimana mereka bergerak di dalam orbit, melainkan akan tetap stabil di dalam sebuah orbit yang tidak meluruh.
Arti penting model ini terletak pada pernyataan
bahwa hukum mekanika klasik tidak berlaku pada gerak elektron di sekitar
inti. Bohr mengusulkan bahwa satu bentuk mekanika baru, atau mekanika
kuantum, menggambarkan gerak elektron di sekitar inti. Namun demikian, model
elektron yang bergerak dalam orbit yang terkuantisasi mengelilingi inti ini
kemudian digantikan oleh model gerak elektron yang lebih akurat sekitar sepuluh
tahun kemudian oleh fisikawan Austria Erwin Schrödinger dan fisikawan Jerman
Werner Heisenberg.
Point-point penting lainnya adalah:
- Ketika sebuah elektron meloncat dari satu orbit ke orbit lainnya, perbedaan energi dibawa (atau dipasok) oleh sebuah kuantum tunggal cahaya (disebut sebagai foton) yang memiliki energi sama dengan perbedaan energi antara kedua orbit.
- Orbit-orbit yang diperkenankan bergantung pada harga-harga
terkuantisasi (diskret) dari momentum sudut orbital, L menurut
persamaan
dimana n = 1,2,3,… dan disebut sebagai bilangan kuantum utama, dan h adalah konstanta Planck.
Point (2) menyatakan bahwa harga terendah dari n
adalah 1. Ini berhubungan dengan radius terkecil yang mungkin yaitu 0.0529 nm.
Radius ini dikenal sebagai radius Bohr. Sekali elektron berada pada orbit ini,
dia tidak akan mungkin bertambah lebih dekat lagi ke proton.
Tingkatan
energi elektron dalam atom hidrogen
Model
Bohr hanya akurat untuk sistem satu elektron seperti atom hidrogen atau helium
yang terionisasi satu kali. Bagian ini hendak menurunkan rumusan
tingkat-tingkat energi atom hidrogen menggunakan model Bohr.
5. Teori Atom Modern
Model atom mekanika kuantum dikembangkan oleh Erwin
Schrodinger (1926).Sebelum Erwin Schrodinger, seorang ahli dari Jerman Werner
Heisenberg mengembangkan teori mekanika kuantum yang dikenal dengan prinsip
ketidakpastian yaitu “Tidak mungkin dapat ditentukan kedudukan dan momentum
suatu benda secara seksama pada saat bersamaan, yang dapat ditentukan adalah
kebolehjadian menemukan elektron pada jarak tertentu dari inti atom”.
Daerah ruang di sekitar inti dengan kebolehjadian
untuk mendapatkan elektron disebut orbital. Bentuk dan tingkat energi orbital
dirumuskan oleh Erwin Schrodinger.Erwin Schrodinger memecahkan suatu persamaan
untuk mendapatkan fungsi gelombang untuk menggambarkan batas kemungkinan
ditemukannya elektron dalam tiga dimensi.
Model
atom dengan orbital lintasan elektron ini disebut model atom modern atau model
atom mekanika kuantum yang berlaku sampai saat ini, seperti terlihat pada
gambar berikut ini.
Awan elektron disekitar inti menunjukan tempat
kebolehjadian elektron. Orbital menggambarkan tingkat energi elektron.
Orbital-orbital dengan tingkat energi yang sama atau hampir sama akan membentuk
sub kulit. Beberapa sub kulit bergabung membentuk kulit.Dengan demikian kulit
terdiri dari beberapa sub kulit dan subkulit terdiri dari beberapa orbital.
Walaupun posisi kulitnya sama tetapi posisi orbitalnya belum tentu sama.
Ciri khas model atom mekanika gelombang
- Gerakan elektron memiliki sifat gelombang, sehingga lintasannya (orbitnya) tidak stasioner seperti model Bohr, tetapi mengikuti penyelesaian kuadrat fungsi gelombang yang disebut orbital (bentuk tiga dimensi darikebolehjadian paling besar ditemukannya elektron dengan keadaan tertentu dalam suatu atom)
- Bentuk dan ukuran orbital bergantung pada harga dari ketiga bilangan kuantumnya. (Elektron yang menempati orbital dinyatakan dalam bilangan kuantum tersebut)
- Posisi elektron sejauh 0,529 Amstrong dari inti H menurut Bohr bukannya sesuatu yang pasti, tetapi bolehjadi merupakan peluang terbesar ditemukannya elektron.
Model Atom
Modern
Model atom mekanika kuantum dikembangkan oleh Erwin
Schrodinger (1926).Sebelum Erwin Schrodinger, seorang ahli dari Jerman Werner
Heisenberg mengembangkan teori mekanika kuantum yang dikenal dengan prinsip
ketidakpastian yaitu “Tidak mungkin dapat ditentukan kedudukan dan momentum
suatu benda secara seksama pada saat bersamaan, yang dapat ditentukan adalah
kebolehjadian menemukan elektron pada jarak tertentu dari inti atom”.
Daerah ruang di sekitar inti dengan kebolehjadian
untuk mendapatkan elektron disebut orbital. Bentuk dan tingkat energi orbital
dirumuskan oleh Erwin Schrodinger.Erwin Schrodinger memecahkan suatu persamaan
untuk mendapatkan fungsi gelombang untuk menggambarkan batas kemungkinan
ditemukannya elektron dalam tiga dimensi
Tidak ada komentar:
Posting Komentar